Topsmall 795ba5cd433f28ec31da9d51b8dad87223a6a3dd8d5067d3fd29fa29bc2764b3
Heart off 2fc66d1863a64740e14e9c6ac49a380448bb8f3d42f72d498baf9b80e93f3622

1.            Пусть u = u(x) и v = v(x) – дифференцируемые в точке х функции. Тогда в точке х имеют место следующие формулы:

d(u±v) = du ±dv

d(uv) = udv+vdu

 (при условии, что V(x) ¹ 0)

Эти формулы следуют из определения дифференциала и свойств производной.

Пример. y = x3sin2x. Найти dy.

dy = (3x2sin2x+2x3cos2x)dx

2. Инвариантность формы дифференциала

Получена формула: dy = f'(x) dx для функции y = f(x), где х – независимая переменная. Пусть теперь y = f(x) и х = g(t), то есть у является сложной функцией t: у = f(g(t)). Тогда dy = y'tdt. По правилу дифференцирования сложной функции имеем y't = y'xx't. Отсюда dy = y'xx'tdt = y'xdx = f'(x)dx, так как x'tdt = dx. Таким образом, дифференциал сложной функции y = f(x), где х = g(t), имеет такой же вид dy = f'(x) dx, как и дифференциал функции y = f(x), где х – независимая переменная.

Это свойство дифференциала сложной функции называется инвариантностью формы дифференциала.

Рассмотрим дифференцируемую функцию независимой переменной y = f(x). Дифференциал этой функции dy = f'(x)dx зависит от х и dx = Dх. Приращение dx от х не зависит, так как приращения в данной точке х можно выбирать независимо от этой точки. Рассматривая dy = f'(x)dx только как функцию от х (то есть считая dx постоянным), можно найти дифференциал этой функции. Дифференциал от дифференциала данной функции y = f(x) называется ее вторым дифференциалом или дифференциалом второго порядка и обозначается символом d2у или d2 f(x). Таким образом, по определению d2у = d(). Вычислим второй дифференциал функции y = f(x).

 Итак,

Аналогично определяются и вычисляются дифференциалы третьего, четвертого и так далее порядков. Вообще, дифференциалом n – го порядка или n-м дифференциалом функции y = f(x) называется дифференциал от ее (n-1) – го дифференциала: dny = d(dn-1y). Легко установить, что dny = f(n)(x)dxn. Дифференциал dy называют дифференциалом первого порядка. Из последней формулы следует .

Замечание. Для сложной функции форма дифференциала dny при n>1 не обладает свойством инвариантности, а значит и . Однако часто и для сложной функции f(n)(x) обозначают , понимая  не как отношение дифференциалов, а как символ, обозначающий f(n)(x).

Оцените материал:

Privacy Policy